August 10, 2017

Facebook : How it meddles with your mind

Facebook is the mythical 800-lb gorilla in the media world that, as the original joke goes, “sits down wherever it wants to”. With 1.2 billion pairs of eyeballs eyeing it every day, it has an audience greater than any American, European or Asian TV news network, newspaper or online news portal. This immense reach also makes it the most effective medium of entertainment. In societies where it has crossed a critical threshold of penetration, it has become the most potent mobilising force in politics and all this eventually translates into Facebook being one of the  most valuable companies in the world.
image borrowed from https://mymuddledmind.blog/

We know that information is power. We also know that power corrupts and absolute power corrupts absolutely. Should we be wary of Facebook? Consider the following ...

In the Foundation series of iconic science fiction novels by Isaac Asimov, we have  the villain, a mutant psychopath called the Mule, using popular musical concerts as a mechanism, a medium, to transmit subliminal messages to an unsuspecting audience, that demoralizes the population and breaks its resistance to the Mule’s political hegemony.  On December 17, 1997, in a chilling realisation of this fictional scenario, many news channels, including the New York Times and CNN, reported from Tokyo, that “The bright flashing lights of a popular TV cartoon became a serious matter Tuesday evening, when they triggered seizures in hundreds of Japanese children. In a national survey, the Tokyo fire department found that at least 618 children had suffered convulsions, vomiting, irritated eyes, and other symptoms after watching "Pokemon."”

Can a mass media platform be used to meddle with or influence, human minds, en masse?

As an early adopter and ardent evangelist of social media, I had always thought that platforms like Facebook and Twitter were an excellent replacement for television and newspapers as channels for current news and diverse views. But after getting drawn into a series of unintentional and inconclusive spats and flame wars with strangers with whom I have little in common and which left both sides as unconvinced about the other’s point of view as ever, I am sceptical. Was the price I was paying for using these “free” channels far too high in terms of the collaterals of irritation and anger generated in an otherwise placid and cheerful person like me? Was this my fault? Was I not savvy enough to handle this new media just as an earlier generation is psychologically uncomfortable with shopping at Flipkart or using an Android smartphone. How did the evangelist in me morph into a social media luddite, ranting against a technology? Was it just me? Or is this feeling universal?

In a peer reviewed paper published in the Harvard Business Review in April 2017, Holly Shakya and Nicholas Christakis has established what I had recently come to believe, namely, that “The More You Use Facebook, the Worse You Feel”! This is paradoxical because social interaction is a necessary and healthy part of human existence and many studies have shown that people thrive when they have strong, positive relationships with others. But when real world, physical relationships are replaced by digital and virtual relationships, the situation changes. The authors measured well-being -- through self reported life satisfaction, mental and physical health and body-mass index -- and Facebook usage -- through the number of likes, posts and clicks on links -- from three waves of data of 5208 users over two years, and came to the conclusion that overall well-being was negatively associated with Facebook usage, with the results being particularly strong for mental health. Moreover, the study also showed that the decline in well-being is strongly tied to the quantity of Facebook usage and not just the quality of interactions as it was believed to be in the past.

While the authors offer no explanation for this negative association of well-being with Facebook usage, it is not difficult to see why this is so if we consider what shows up on your newsfeed. Depending on the number of posts that your friends, and pages that you have liked, have shared there would be approximately 2000+ items that Facebook could show you but since this  leads to an uncomfortable information overload, the actual number shown is possibly as low as 200. This selection or curation is not performed by any human editor but by an artificial intelligence (AI) program that is designed to maximise benefits for Facebook. Since it is in Facebook’s interest to stimulate conversations, it’s AI will obviously select items that would provoke a user to react -- just as in a zoo, visitors throw stones at the animals instead of allowing them to rest in peace. Hence, while placid and informative items will not be totally ignored, there will always be a slight bias towards items that will provoke a reaction. For example, a Hindutva follower -- and Facebook knows our preferences to the last detail -- will be shown more items on minority appeasement, knowing fully well that is more likely to trigger a torrid response, and a subsequent equally torrid counter response,  than pictures of flowers and birds. Of course this bias is neither obvious nor in-your-face. You will still see the usual quota of bland, feel-good quotes and pictures of friends holidaying in Goa or Singapore. Which is fine, except that you just might feel a tad disappointed that you are stuck in messy Mumbai instead of being in Goa which in another reason for feeling a bit sore with yourself! Since nobody posts about their problems, this too leads to the depressing belief that everyone except you is happy.

In fact, playing and tampering with Facebook users’ emotions and deliberately trying to modify it is the subject of a very controversial paper - “Experimental evidence of massive-scale emotional contagion through social networks”, published in the June 2014 issue of the Proceedings of the National Academy of Science USA, by members of the data science team of Facebook. For the purpose of this paper, the Facebook team deliberately introduced a certain bias in the nature of items included in the Facebook user’s newsfeed and observed the impact on their subsequent behaviour. To quote the authors, “In an experiment with people who use Facebook, we test whether emotional contagion occurs outside of in-person interaction between individuals by reducing the amount of emotional content in the News Feed. When positive expressions were reduced, people produced fewer positive posts and more negative posts; when negative expressions were reduced, the opposite pattern occurred. These results indicate that emotions expressed by others on Facebook influence our own emotions, constituting experimental evidence for massive-scale contagion via social networks.”

This paper was criticised for violating basic ethical principles of psychology research because no consent was sought from the subjects whose emotions were being tampered with. That does not detract from the fundamental premise that Facebook has the ability to modify the emotions of its users and has done so in the past.  In fact, what is even more disturbing is that Facebook now has the technology to use  webcams and smartphone cameras to track emotions in real-time by detecting, decoding facial expressions as we read posts! While there is no evidence of any deliberate evil intent as yet, the fact that it’s AI based news selection service can detect and tamper with the emotions of users is a big red flag because, as noted earlier, Facebook touches more people than any newspaper, television channel or news portal and so has the ability to mould the emotions of a significant part of the global population.

While Facebook has been targeted for being a channel or firehose for fake and unstantiated news, the real danger lies in its ability to tamper with our emotions and, as reported in the HBR paper, make all of us feel angry, frustrated, jealous and upset with the world around us. Can we do anything to mitigate this unfortunate state of affairs? At a personal level, one could reduce the amount of time spent on the platform but since Facebook is an addiction like tobacco or alcohol with similar withdrawal symptoms, this may not be a feasible solution for everyone.

What users could ask for instead, is greater transparency in the algorithm, the procedure, used to determine what they see or don’t. If I want to see posts about birds and flowers, I must not be shown pictures of stone-pelters in Kashmir. In fact, such a process does exist, because you can indicate the kinds of posts that you want to see less of, but a more direct method should go a long way to restore the sense of choice that we have in newspapers and TV to read or ignore specific items of news and views

Social media is here to stay and Facebook, with its unassailable reach and immense clout, is something that -- like the monsoon rain -- we have to learn to live with. However knowing the danger that it poses and working on ways to reduce its impact is something that needs urgent action.


This article originally appeared in Swarajya, the magazine that reads India right.

July 27, 2017

OLAP Data Cube with SQL

As an erstwhile DBA, a long time user and a great admirer of the SQL language -- that has stood the test of time for the last 30 years -- I have always sought to use SQL in many useful ways. In an earlier post, I had shown how SQL can be used to solve a classic data science problem, namely Clustering, using the K-Means algorithm and today, I demonstrate how SQL can be used to process OLAP data cubes and generate the popular cross-tabs table.

Data cubes, or OLAP cubes, are a way to store historic data using the dimensional model, as opposed to the relational or 3rd normal form model. These data cubes can be "sliced" and "diced" to reveal data relevant to particular dimensions. Because of the immense popularity and ubiquity of relational databases, like Oracle and MySQL, data in the dimensional model is routinely stored in relational tables and retrieved -- by slicing and dicing the cube -- using standard SQL constructs like the WHERE clause. This is called Relational OLAP or ROLAP.

Data cubes are very popular because they allow multidimensional data to be collapsed to any two dimensions and shown as a "CrossTab" -- and human beings can comfortably visualise only two dimensions on a page or a screen. Unfortunately, creating CrossTabs is not very easy with normal SQL and that is why there exist a genre of specialist products -- Multidimensional OLAP or MOLAP -- that allow users to create CrossTabs by "rotating" the data cube as necessary.

Microsoft SQL-Server, a RDBMS product, has a proprietary construct called CUBE that allows this feature but this is not available in most RDBMS products and certainly not in MySQL, the free and open-source product that is the most widely used RDBMS on the planet.

The following slide deck shows how MySQL can be used to "rotate" an OLAP data cube and generate CrossTabs for any cube of dimension 3 or higher


(please view the slide deck in full screen mode)
We also show how a "pivot" table, so beloved of Excel users can also be generated using MySQL and hence by extension in any RDBMS.

But why would anyone wish to use SQL or MySQL to build and work with data cubes when MOLAP tools are available?
  1. First, SQL is easily understood and widely used by a vast majority of IT professionals
  2. Second, MySQL is a free and open-source product that is used in almost every web application
  3. Third, SQL is supported in a multi-machine, clustered environments like Hadoop/Hive and Spark and so this technique can be used -- at least in principle -- to support data cubes built with ultra large data sets.
Unless one wants the bells and whistles that come along with most MOLAP products, MySQL is good enough for almost any OLAP activity and can be scaled up with Hive / Spark for very large data.

Acknowledgement : The technique demonstrated in this post has been adopted from information provided at http://www.artfulsoftware.com/infotree/qrytip.php?id=78

June 30, 2017

Quantum Computers

Quantum mechanics is a subject that has the strange property of simultaneously being logically rigorous and yet completely counterintuitive. So much so, that even a towering intellect like Einstein could never bring himself to accept its principles even though products based on the same exist all around us. The earliest oddity, identified by Schrodinger, one of the founders of quantum mechanics is about a hypothetical cat that is neither dead nor alive until someone actually observes it. A similar oddity is that of quantum entanglement, where the behaviour of one particle is instantly affected by the behaviour of another particle, however distant it may be -- an example of “spooky” action-at-a-distance. Explaining these phenomena is beyond the scope and temerity of this article and so the reader would have to accept them here in good, almost religious, faith and carry on with the belief that such phenomenon has been observed and explained by scientists under the most rigorous experimental circumstances.

Image borrowed from Quanta Magazine
Any programmable digital computer that we use, the desktop,the smartphone or the ones at Google, is based on a finite state machine (FSM). It can, at any instant of time, be in one of a large, but finite, number of well defined states. The state of a FSM is defined by the value stored in each of its memory locations and we know that these can either be 0 or 1. So an FSM with, say, 16 bits of memory could in principle be in any one of 2^16 states. Any instruction to the FSM changes the value of one or more bits and and the FSM moves to a different state. An FSM along with the ability to read binary input, from an infinite tape, and write back on the same tape, is the Turing machine that is the theoretical basis of any modern computer.

The fundamental principle of computer science is that the world is computable, meaning that any logically decidable problem can be represented and solved on a Turing machine and hence by extension on some, possibly very powerful, digital computer. This is the basis of our immense belief in computer technology that powers everything from smartphones to artificial intelligence. But even as long back as 1982, Richard Feynman had questioned this principle because he realised that Turing / FSM based computers could not solve the problem of simulating the movement of multiple particles whereas nature was doing it all the time! Did the quantum mechanical behaviour of nature mean that nature had a computing device that was inherently superior to the Turing machines built by classical computer technology? This is where the concept of a quantum computer was born.

A computer, is a state-machine where it’s state is defined by the collective states of each of its memory locations. In a classical computer, each memory location, or bit, can either be 0 or 1 certainly not both, but in a quantum computer it can be both 0 and 1 simultaneously -- very much like Schrodinger’s cat that was dead and alive at the same time!  This is where the going gets really rough for anyone who has spent a lifetime in classical computer science because this is something that is completely counter-intuitive. A memory location, a bit, is a transistor, or switch, made of silicon that is either ON or OFF. How can it be both? Turns out, that if you keep aside computer science and open your books on quantum mechanics, it is indeed possible that a body can be in two states at the same time based on the well established principle of quantum superposition. Now if we go back to our 16 bit classical computer with its 2^16 states and replace it with a quantum computer with 16 quantum bits, or qubits, of memory we have a machine that can be in 2^16 states simultaneously. If that is not mind-bending enough, all these 2^16 states will collapse into any one of the states as soon as we try to observe it. It is almost as if nature is playing a game with us, pretending to be classical whereas it is actually quantum.

But why are we obsessed with this counter-intuitive phenomenon? Will it have a drastic improvement on existing digital computer technology? Not really. Your spreadsheet, email, YouTube, eCommerce, smartphone will hardly change but two things could. First, current cybersecurity systems, that are based on our inability to decompose integers into their prime factors in a reasonable amount of time, could be ripped apart by quantum computers, leaving all passwords vulnerable to hackers. Second artificial intelligence could be taken to altogether and unbelievable levels of sophistication. So quantum computers will soon have a very important role to play -- but how far away are we from real, practical systems?

The biggest challenge is the construction of the physical memory locations and the complexity of the engineering problem is evident from the following : A modern IBM classical computer chip has anything between 2 and 7 billion transistors each of which can be ON or OFF. The corresponding IBM quantum computer chip, that powers the IBM Quantum Experience machine, has only 5, yes just 5, qubits of memory that can be in quantum superposition of ON and OFF. Why so? First, the memory locations have to be cooled to near zero Kelvin to exhibit their quantum superposition behaviour and if the cryogenic challenge was not enough, the second challenge is even bigger. Unlike the memory locations of classical computers whose state can be determined by sensing the presence or absence of an electrical voltage, the multiple, superimposed quantum states collapse as soon as any effort is made to observe them. This is as if a room has a house of cards that collapse as soon as the door is opened by the observer and the observer has to figure out what the house looked like by observing the disposition of the cards on the floor! Since the qubits can never be accessed directly, as in a classical computer with read and write statements, they can only be “influenced” indirectly.

To put things in perspective, ENIAC, one of the world’s first, 1st generation, vacuum tube based classical computer had 20 memory units, or accumulators, in 1945, and a 2nd generation, transistor-based computer from the University of Manchester had only 200 transistors in 1955. Since then we have moved through 3rd generation integrated chips and the current 4th generation of microprocessors have scaled up to billions of transistors thanks to the inexorable pressure of Moore’s Law. If we remember that even with its 20 memory units, ENIAC was used to solve problems in weather forecasting, atomic energy calculations, wind tunnel design, the current 5 qubit IBM machine does not look as hopeless, or helpless, as it seems to be.

But actually things are a little better off. D-Wave a Canadian company that has been building quantum computers since 1999  have come out with a 128 qubit machine in 2010, a 512 qubit machine in 2012 and 1000 qubit machine in 2015. Initially there were some doubts about whether these were quantum machines at all but after these machines were actually installed and used first by Lockheed Martin at the University of Southern California and later at the Quantum AI Lab of NASA Ames Research Centre by a team from Google, these doubts have receded to a large extent. But even though some doubts persist, there is enough evidence of quantum behaviour or at least great promise that these doubts will be removed soon. In early 2017, D-wave announced the sale of their first, commercial available $15 million 2000-qubit machine to cyber-security firm, Temporal Defence Systems.

IBM’s 5-qubit Quantum Experience is positioned as general purpose computer. It could be used for any computational task but would be efficient only if the program was designed to use quantum properties -- a colour TV is useful only if the broadcast is in colour. Very few programs can do this today but Shor’s algorithm, used to crack passwords, is definitely one such. D-Wave systems on the other hand are designed to solve one class of problems that minimise the weighted sum of large number of interrelated, or entangled, variables. This may sound restrictive but the reason why everyone from Google to Temporal is interested is because this class of problems is similar to the ones that occur in artificial neural networks that lie at the heart of systems based on machine learning.

Spectacular progress in machine learning with artificial neural networks using classical computers itself, is rapidly closing the gap between biological and nonbiological intelligence or even between carbon and silicon “life-forms”. With the advent of quantum computers one more crucial barrier between the natural world and it’s man-made, artificial model could break down -- as could the increasingly thin line that delineates man from machine. Will this drag man down to the level of machines? Or will these machines push man up towards his eventual union, or Yoga, with the transcendent omniscience that some refer to as God or Brahman?


This article originally appeared in Swarajya -- The magazine that reads India right!

June 03, 2017

Order, Stability or Chaos?

Global, national and local societies face many threats. We are threatened by enemies -- internal and external -- who want to destroy our way of life. We are plagued with environmental degradation as we quickly try to ramp up the economy and improve our living standards. Finally our own social systems are in tatters because efforts to mitigate the effects of the first two reasons are stymied by venal corruption and a cynical disregard for the rule of law. In fact the last reason is perhaps the most over arching reason, because it leads to the other two.

image from 5rhythms
We have solutions to most of our problems. Technology solutions are available to grow more food, generate more energy, combat disease and check crime. There are public structures like hospitals, schools, municipal, state and central governments, the legislature, each having its own set of rules and procedures, to guide and govern matters. There are commercial structures, like corporates, cooperatives and professional networks that transform natural and human resources into disposable surplus that can be used for material pleasure. Then there are clubs, non-profits and political parties that lubricates the gears and facilitates the work of the public and private structures. Finally, we have a whole set of checks and balances, like police, the courts of law, and institutions that recursively keep checks on the checks and balances, like Vigilance Department, the CBI and the LokPal to ensure that everyone does what they should. So in principle, if everything were to work like clockwork, there should not be any unresolved problems on the planet.

But obviously this is absurd. Unlike the precise determinism of classical mechanics, the social mechanism that governs society is based on the non-deterministic behaviour of human beings. No two persons are alike and so no two will respond to a situation in an identical manner. One may be afraid to break the law even if there is a benefit but another may be willing to do so. So there is an element of randomness that permeates society and it is this randomness that is key determinant of social outcomes.

Randomness leads the environment from order to disorder. Physics equates disorder with entropy and the Second Law of Thermodynamics states that entropy of a closed system can only increase over time. In fact the direction of the “arrow of time” is often determined by the level of entropy between two states of the system. Information theory also associates entropy with randomness. Uncertain, random events are associated with high information content and hence high entropy. Certain events, like the daily sunrise, that have a probability of 1, are associated with zero entropy, as are impossible events like a horse giving birth to a dog, that have a probability of 0. But entropy is high when there is uncertainty and unpredictability as in the outcome of a toss of a fair coin, the results of an election or a war.

Increase in entropy, in randomness, in unpredictability, leads to chaos that can be analysed in terms of Chaos Theory. Chaos is the inevitable outcome of any adaptive, dynamic and complex system which is exactly what human society is. Chaos is unpredictability in the face of apparent determinism -- and as Edward Lorenz puts it so elegantly, Chaos is when the present determines the future, but the approximate present does not approximately determine the future. What this means is that a slight change in initial conditions -- a crow flapping its wings in Calcutta -- can cause a major upheaval far away -- a tornado in Texas. Mapped to human society, it means that social uncertainty caused by the erratic, unpredictable behaviour of a even a small group of people can cause ripples and upheavals across the world.

Chaos theory allows for strange attractors, or periodic repetitions of somewhat predictable outcomes, which is why human society settles into equilibria that gives us a sense of stability.  But given its colossal complexity even one incident, like 9/11, can tip it into a new, possibly more uncomfortable and anarchic equilibrium. Complexity is in fact impossible to manage in large organisations which is why we have the eventual collapse of centrally governed empires -- the Kaurava, the Pharaonic, the Roman, the Mauryan, the Holy Roman, the Ottoman, the Mughal, the British, the Soviet and finally the European Union. We can only hope that India will not join this list. Well governed human societies are based on the rule of law and order and it is this order that is under threat from the Second Law of thermodynamics and Chaos Theory. While we all crave for order, the reason why we rarely attain it is because the laws of the universe inexorably push us towards disorder and anarchy.

But will entropy always increase? Not really. In a small closed system -- as in a school, a company, a factory, a state like Singapore, or perhaps a human colony on Mars -- it is possible to reduce the local entropy within the system and impose perfect order, but this needs one of two prerequisites. Either we need an external agency imposing order from outside -- a non-popular dictatorship -- or there has to exist a mechanism of self-organisation, that resolves contradictions and guides the system towards greater order. A small school or factory is an example of the first while well governed US cities that are cleaner and more habitable than anarchic municipalities in India is an example of the second.

But even in a small society, that is somehow isolated from the random anarchy of the global environment, the ability to self regulate is not guaranteed. Self regulation is actually an outcome of enlightened self-interest that seeks to create the proverbial win-win situation that benefits all at the cost of none. But this is not easy. To understand why, consider the Prisoner’s Dilemma, a special case of a mathematical oddity called Nash Equilibrium that is a part of Game Theory.

Consider two persons who have been arrested for a murder but the police do not have any clinching evidence, with which they can ensure a conviction. So both prisoners are offered a plea-bargain offer. If any one turns approver and betrays the other, then the betrayer will be let off but the other will serve twenty years in jail. If both turn approver, then both serve ten years in jail. But if both cooperate and neither betrays the other, then the police will imprison them for a year on a lesser crime. Unfortunately, neither do the prisoners have any knowledge of what the other prisoner will do and nor do they trust each other. Ideally neither should betray the other, because this will ensure light punishment for both which is the best solution. But in reality, given the uncertainty, neither will trust the other, both will betray each other and so ensure ten year hardship for both. A classic lose-lose scenario.

This scenario is reflected in many real life situations like women wearing makeup to look more elegant, athletes using steroids to enhance performance, over-exploitation of resources like fishes or minerals, countries spending money on arms and ammunitions, countries refusing restrictions on environmental pollutants that hamper economic growth, advertisers spending money to push competing products or bidders at an auction being afflicted with the winner’s curse. In India, aggressive drivers break traffic rules to squeeze past others and in the process create  massive traffic jam whereas everyone could reach home earlier by waiting and obeying traffic rules.

If only people would cooperate with each other, the world will be a better place but the inexorable laws of Game Theory says that this will never happen. If all political parties were to cooperate on matters of national interest, like implementing labour reforms or fighting Islamic terror, many of the social and economic problems that bedevil India can be quickly eliminated but as in the case of the Prisoner’s Dilemma, each political party thinks that cooperating with the other means sealing one’s own electoral fate and facilitating a landslide victory for the other.

Human society is in a bind. The Second Law and Chaos Theory pushes us towards anarchy while Game Theory prevents us from self-organising. So we are forced to reconcile ourselves to a chaotic future. Given the inevitability of chaos in complex systems, our only hope for stability and order would be to have smaller, simpler systems that are easier to manage. Small states, municipalities, panchayats and even gated communities, where the number of players, or variables, is small and where complexity is manageable, have a far better chance of avoiding anarchy.  Going forward, as complex social and security challenges -- both international and now more often intra-national -- overwhelm the world, a loosely-coupled federation of small, self-sustainable, technology enabled, well-managed, elitist communities or “smart-cities”, spread across the Earth and nearby planets, may be the only way towards a reasonably stable future.

The Prisoner’s Dilemma and the inability of people to collaborate for the common good may be a persistent roadblock on the path to global peace with prosperity.


This article first appeared in Swarajya - the magazine that reads India right

May 05, 2017

Biohackers & Biohackspaces

The ubiquity of computers and smartphones and the pervasive presence of digital technology means that everybody who is reading this article is familiar with hackers. Hackers, as we all believe, are evil people, who either create viruses that ruin our machines or access our computers to steal confidential information with the intention to cause harm. We also have ethical, or white-hat, hackers, the guards and policemen, who with the same level of skill, try to beat the evil black-hat hackers at their game and keep digital assets secure. But the original meaning of hacker was someone who is so intensely immersed in computer technology that he knows much more than what a normal, non-hacker,  user would ever know about what can be done with computers. The hacker was the uber-geek, in whose hands a computer could be stretched to perform tasks that it was never meant for and deliver unexpected results. The hacker was a genius, not necessarily the evil genius that he -- and it is generally a he -- is portrayed to be. He was someone who could, in a sense, disassemble and reassemble the hardware and software in ways that no one else can even think about, to create new functionality. This same kind of behaviour when seen in the world of biosciences is called biohacking.
image borrowed from
 https://www.meetup.com/en-AU/BioHack-Melbourne/events/237997248/


Given the very wide range possibilities within biosciences, biohacking means different things to different people but there is one common thread. Just like his better known computer cousin, the biohacker generally works alone or in small groups and usually outside the regulated confines of a university or corporate laboratory. So his -- or her, biosciences is more gender diverse -- activities are usually unsupervised, unregulated and more often than not borders on the unsafe if not almost illegal. But if we leave aside the legal and ethical issues, then biohacking falls into two, broad and sometimes overlapping categories, namely grinding, body hacks or body modification on one hand and DIYbio or synthetic biology on the other.

Grinders are people who modify, or upgrade their biological bodies with non-biological components. A very simple body-hack is to have a bio-safe RFID or magnetic chip -- similar to what we have in our credit cards --  implanted under the skin of the wrist. This chip contains digital information that can be used to “magically” open doors secured with access control devices or unlock smartphone or computers without using passwords. Such implants are not much different from pacemakers but obviously serve a different purpose.

Human beings have five sensory organs but this can be increased or their capabilities enhanced. People have embedded rice-grain sized neodymium magnets, coated with bio-safe materials like titanium nitride or teflon, commonly used in orthopaedic equipments, inside their arms. In the presence of magnetic field, say near an electric motor, these vibrate and alert the user to the existence of the field. Bottlenose, an off-the-shelf customisable product from Grindhouse Wetware, extends this basic capability to ultraviolet, WiFi, sonar or thermal signals, so that, for example, people can estimate distances in the dark using sound waves -- like dolphins or bats.

Pushing into even more dangerous territory, grinders have laced their eyes with a chlorophyll derivative found in the eyes of the deep sea dragonfish that lives in the mile-deep darkness of the ocean. This causes a dramatic improvement in night vision allowing them to recognise people in near darkness. It is also possible to implant a magnet in the tragus -- the small protuberance in front of the year, used to carry ear-piercing jewellery -- that allows one to listen for vibrations generated by a phone and works like an inexpensive ear-piece. An even more amazing example is that of colour-blind musician Neil Harbisson, who persuaded an anonymous surgeon to perform an illegal operation to implant a camera on skull and connect it to a vibrating chip placed near his inner ear. Now the colour blind artist can distinguish colours -- say the red or green of traffic signal -- by noting the frequency or pitch of the sound that he hears when his face, and hence the camera, turns towards coloured objects.

The most shocking body-hack, pun intended, is to improve the performance of the brain with a 2.5 mA, 15 V electric shock -- transcranial direct current stimulation (tDCS). Available off the shelf as ThinkingCap, this device alters the electrical potential of stimulated neurons making them fire differently, leading to better or at least perceptibly different abilities of the brain. Anecdotal evidence suggests that the US Armed forces is experimenting with this technology to keep soldiers calm under stress and improve their marksmanship under simulated battlefield situations!

Obviously none of these body-hacks are approved by any medical regulator and experimenters do so at their peril, but who knowns, out of such intrepid experiments will one day emerge a new kind of human being who may be able to breathe underwater or live happily in the methane atmosphere of Titan.

Less dramatic but perhaps more profound is the kind of work that is done in synthetic biology or Do-It-Yourself biology. Most of the projects in this area are focussed on altering the genetic sequence on existing lifeforms to create modified organisms -- for example microbes that generate copious quantities of insulin needed by diabetics. “Editing” the genetic code is not easy -- it requires big laboratories, lots of equipment and highly trained staff. But thanks to an amazing new technology called CRISPR/Cas9 that was developed in 2012, gene editing has now become faster and inexpensive. Key CRISPR tools, the plasmids -- a genetic structure, typically a small circular DNA strand, that is widely used in the laboratory manipulation of genes -- can be ordered online from companies and non-profit repositories like AddGene, much like books from Flipkart, at prices as low as US$60.

While CRISPR promises garage level DIYbio, in reality, there is some basic level of equipment that is necessary to use these tools. This is where gene clubs and collectives have started to appear. From garages and kitchens, we now have biohacker spaces that offer shared services for fairly sophisticated equipments that members can use either against a monthly fee or on a pay-per-use basis, very similar to the way large computers are available on a shared basis from cloud hosting services like Amazon or Google.  BioCurious, located in Sunnyvale, in the heart of the silicon valley in California is one such biohackspace that offers much of the same equipment found in professional labs. Similarly, the London Biohackspace is located within the London Hackspace that is wildly popular with computer hackers working with the latest in digital technology.

Just as software programmers work collaboratively on open-source software like Linux, volunteers are collaborating at BioCurious to create vegetarian cheese without using any animals by modifying the DNA of baker’s yeast. Similarly, a community driven project at the London Hackspace is trying to create plants that glow in the dark when exposed to mechanical movement or in the presence of toxic chemicals. Community projects at both these labs are also directed towards building new kinds of equipment, like a bioprinter, a 3D printer that can be used to actually “print-out” body parts like skin or even kidneys! Not all projects are community driven. Some individual hackers experiment with their own DNA are looking for genes that may cause diseases, or even to find out what percentage of their own genes comes from Neanderthals!

These biohackspaces are driven by a chaotic combination of ideas and motivation -- that is very reminiscent of the original computer hackers who laid the foundations of the digital revolution that we see today. In fact Wired Magazine has quoted Bill Gates who says that if he were a teenager today, he would be hacking biology -- “Creating artificial life with DNA synthesis. That’s sort of the equivalent of machine-language programming .. If you want to change the world in some big way, that’s where you should start — biological molecules.”

But while biohacking might change the world, there are risks involved and this risk gets magnified when we have unsupervised people playing with dangerous tools. Hence most of these biohackspaces have basic bio-safety protocols in place to prevent any kinds of dangerous experiments and are under informal surveillance of many security agencies including the FBI’s Biological Countermeasures Units. Every technology has the potential to both help and as well hurt society and the biosciences is no different in this regard from either computers or atomic energy.

India never quite had the hacker culture that created the computer revolution. Perhaps that is why Indian IT  was born, not in the crucible of innovation but in the peat bogs of modifying COBOL programs to address Y2K bugs -- and continues with the unfortunate legacy of being a maintenance service industry. Given that a new and far more potent revolution in the biosciences is breaking out all around us, it is important that we quickly create an ecosystem, these biohackspaces, so that our biohackers can lead, not just follow, the herd into the future.


This article originally appeared in Swarajya, the magazine that reads India right!

April 23, 2017

Beautiful and unusual gift from PMI West Bengal

Yesterday, I had the good fortune to have been invited to speak at the PMI Regional conference where instead of the regular, and pointless, bouquet of flowers that is traditionally given to the keynote speaker, I was presented with the following certificate


what this means is that PMI has paid Sankalptaru.org some money to plant 10 trees on my behalf and "my tree" is visible in at the URL indicated by the QRcode.

Thank you PMI for this unusual gift

April 22, 2017

DB2 to Lotus : Accessing Mainframe Data from PC in the pre-Windows age


About This Blog

  © Blogger template 'External' by Ourblogtemplates.com 2008

Back to TOP